Welcome to Acta Agronomica Sinica,

Mud Logging Engineering ›› 2019, Vol. 30 ›› Issue (2): 86-91.doi: 10.3969/j.issn.1672-9803.2019.02.017

• EQUIPMENT • Previous Articles     Next Articles

Design and application of intelligent oil well management system

Yong Chen()   

  1. Dongyang Binjiang Lijing,Guangfu Street,Guang'an District,Guang'an City,Sichuan Province,638000,China
  • Received:2019-04-17 Online:2019-06-25 Published:2019-07-08

Abstract:

In view of the inefficiency and high cost of current oil well management,administrators are not able to accurately know the on-site production status in real time,an automatic analysis intelligent oil well management system based on visual intelligent monitoring and neural network expert system is proposed. Compared with traditional oil well management system,intelligent oil well management system can realize real-time transmission of on-site production data,improving the real-time characteristic and authenticity of data. Real-time monitoring of oil well production site through intelligent camera device improves oil well production safety. When the on-site production fails,the system automatically recognizes it through the neural network expert system,intelligently opens and shuts in the well and informs the on-site personnel to dispose in time,improving the production efficiency. The system comprehensively perceives oilfield production performance and realizes visual intelligent monitoring of oilfields. The forecast of the trend of oil and gas fields continuously optimizes oil and gas field management. The intelligent oil well management system has been installed in more than 120 wells,the field application effect is good.

Key words: oil well management, visualization, intelligent monitoring, intelligent expert system

CLC Number: 

  • TE132.1

"

"

"

"

"

"

特征参数 释义 特征参数 释义
C1 实测/理论示功图面积比 C11 最大载荷到最大位移点损失示功图面
积与固定阀关闭点到最大位移点损失
示功图面积比
C2 固定阀、游动阀开闭线载荷差与理论柱
塞载荷差之比
C12 最大位移点到最小载荷点损失示功图
面积与最大位移到游动阀开启点损失
示功图面积比
C3 固定阀开闭载荷、泵上冲程平均载荷差
与理论柱塞载荷差之比
C13 抽吸压力损失比
C4 游动阀开闭载荷、泵下冲程平均载荷差
与理论柱塞载荷差之比
C14 抽吸压力损失比
C5 最大载荷、固定阀开闭载荷差与理论柱
塞载荷差之比
C15 抽油泵泵效
C6 最大位移点与最大载荷点柱塞位移量
与柱塞冲程比
C16 相邻两点载荷跳变点数
C7 游动阀开闭载荷、最小载荷差与理论柱
塞载荷差之比
C17 最小位移点到固定阀开启点柱塞位移量
与柱塞冲程比
C8 最小位移点与最小载荷点柱塞位移量
与柱塞冲程比
C18 最小位移点到游动阀关闭点柱塞位移量
与柱塞冲程比
C9 冲程损失比 C19 柱塞面积内压力损耗
C10 最大载荷点与最小载荷点柱塞位移量
与柱塞冲程比
C20 最大位移点到游动阀开启点柱塞位移量
与柱塞冲程比

"

"

规则 规则条件 规则结论 规则 规则条件 规则结论
1 C13≥0.8,C15≥0.9 连抽带喷 10 C1>0.35,C2>0.6,C18≥0.2 固定阀漏失
2 C1≤0.35,C2≤0.35,C3≥-0.5,
C4≥0.5,C15≤0.35
固定阀卡死 11 C1>0.35,C2>0.6,C17≥0.2 游动阀漏失
3 C1≤0.35,C2≤0.35,C3<-0.5,
C4≥0.5,C15≤0.35
泵严重磨损 12 C1>1.2,2.35>C2>1.5,C9>0.5 液体摩阻
4 C1≤0.35,C2≤0.35,C3<-0.5,
C15<0.1
抽油杆断脱 13 C1>0.32,C2>0.6,C5>0.35,
C7>0.35,C10≤0.15,C15>0.35
泵筒弯曲
5 C1≤0.35,C2>0.6,C14>1.0,
C15≤0.1,C19≥2.5
气锁 14 C1>0.32,C2>0.6,C5>0.32,
C6<0.13
泵上碰
6 C1≥0.35,C2>0.6,C19<2.0,
C20≥0.4
液击 15 C1>0.32,C2>0.6,C7≥0.32,
C8<0.13
泵下碰
7 C1≥0.35,C2>0.6,C12>0.44,
C19≥2.0
气体影响 16 C2≥2.5,C9≤0.5 卡泵
8 C1>0.35,C2>0.6,C12>0.44,
C19<2.0,C20<0.4
轻度液击 17 C1>0.32,1.5≥C2>0.6,C5>0.2,
C7<0.2,C9>0.5,C17<0.2,
C18<0.2,C19>0.2
正常
9 C1>0.35,C2>0.6,C11≥1.5,
C12≥1.5
柱塞脱筒 18 C16≥9 砂阻
[1] 王凯. 基于产生式规则系统的抽油泵故障诊断[J]. 石油勘探与开发,2010,37(1):116-120.
WANG Kai.Fault diagnosis of rod-pumping unit based on production rules system[J]. Petroleum Exploration and Development,2010,37(1):116-120.
[2] 徐芃,徐士进,尹宏伟. 有杆抽油系统故障诊断的人工神经网络方法[J]. 石油学报,2006,27(2):107-110.
XU Peng,XU Shijin,YIN Hongwei.Application of BP neural network and self-organizing competitive neural network to fault diagnosis of suck rod pumping system[J]. Acta Petrolei Sinica,2006,27(2):107-110.
[3] 贾爱林,郭建林. 智能化油气田建设关键技术与认识[J]. 石油勘探与开发,2012,39(1):118-122.
JIA Ailin,GUO Jianlin.Key technologies and understandings on the construction of smart fields[J]. Petroleum Exploration and Development,2012,39(1):118-122.
[4] 贾德利,刘合,斐晓含,等. 游梁式抽油机井井下泵功图测试方法[J]. 石油勘探与开发,2015,42(1):111-116.
JIA Deli,LIU He,FEI Xiaohan,et al.Test approach of downhole pump diagram for beam bumping wells[J]. Petroleum Exploration and Development,2015,42(1):111-116.
[5] 李敬元,陈国春,李子丰,等. 滤波技术在有杆泵抽油系统诊断中的应用[J]. 石油学报,2010,31(1):144-147.
LI Jingyuan,CHEN Guochun,LI Zifeng,et al.Application of filter technique to diagnosis of sucker-rod pumping system[J]. Acta Petrolei Sinica,2010,31(1):144-147.
[6] 杜保东,李明山. 人工神经网络识别抽油机井示功图的研究[J]. 油气井测试,1998,7(1):27-29.
DU Baodong,LI Mingshan.Research on identifying the diagram of rod pumping well by artificial neural network[J]. Well Testing,1998,7(1):27-29.
[7] 王文珍. 基于无线传感网络油田智能监控系统的设计[J]. 自动化仪表 2013,34(2):92-94.
WANG Wenzhen.Design of the WSN-based intelligent monitoring system for oilfield[J]. Process Automation Instrumentation,2013,34(2):92-94.
[8] 王玉成,查建中,焦建新,等. 抽油机井集成化智能诊断系统的研究[J]. 石油学报,1994,15(4):125-132.
WANG Yucheng,ZHA Jianzhong,JIAO Jianxin,et al.Integrated intelligent diagnosis system for sucker rod pumped wells[J]. Acta Petrolei Sinica,1994,15(4):125-132.
[9] 桂振文,吴侹,彭欣. 一种融合多传感器信息的移动图像识别方法[J]. 自动化学报,2015,41(8):1394-1404.
GUI Zhenwen,WU Ting,PENG Xin.A novel recognition approach for mobile image fusing inertial sensors[J]. Acta Automatica Sinica,2015,41(8):1394-1404.
[10] 管皓,薛向阳,安志勇. 深度学习在视频目标跟踪中的应用进展与展望[J]. 自动化学报,2016,42(6):834-847.
GUAN Hao,XUE Xiangyang,AN Zhiyong.Advances on application of deep learning for video object tracking[J]. Acta Automatica Sinica,2016,42(6):834-847.
[11] 朱煜,赵江坤,王逸宁,等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报,2016,42(6):848-857.
ZHU Yu,ZHAO Jiangkun,WANG Yining,et al.A review of human action recognition based on deep learning[J]. Acta Automatica Sinica,2016,42(6):848-857.
[12] 何信华,胡绍华,陈勇,等. 基于单幅二维图像的摄像机标定方法研究[J]. 计算机科学与应用,2013(3):23-29.
HE Xinhua,HU Shaohua,CHEN Yong,et al.A camera calibration method study based on single two-dimensional image[J]. Computer Science and Application,2013(3):23-29.
[13] 胡绍华,陈勇,何信华. 实时目标跟踪研究[J]. 计算机科学与应用,2014(4):158-168.
HU Shaohua,CHEN Yong,HE Xinhua.Study on real-time target tracking[J]. Computer Science and Application,2014(4):158-168.
[14] 何信华,陈勇,赵雷,等. 多遥测图像数据流的自动拼接与自动优选技术[J]. 遥测遥控,2017,38(3):50-58.
HE Xinhua,CHEN Yong,ZHAO Lei,et al.Automatic splicing & optimization method on multiple telemetry image data streams[J]. Journal of Telemetry,Tracking and Command,2017,38(3):50-58.
[1] FANG Xixian. Discussion on shale oil reservoir evaluation parameters based on mud logging data [J]. Mud Logging Engineering, 2023, 34(1): 1-8.
[2] WANG Lei. Research and application of micro-drilling time logging technology in Jidong Oilfield [J]. Mud Logging Engineering, 2023, 34(1): 9-17.
[3] XIANG Keman, TANG Cheng, WANG Chongjing, LIANG Bo, FAN Gang. Study on UMAP algorithm discriminant chart of sublayers in the target areas of horizontal wells in block D of Southern Sichuan Basin [J]. Mud Logging Engineering, 2023, 34(1): 18-23.
[4] HU Zongmin, ZHANG Ligang, LUO Guangdong, WANG Qu, DENG Shengjia, FENG Wei. Evaluation of anti-drilling properties of deep igneous rocks based on element logging [J]. Mud Logging Engineering, 2023, 34(1): 24-28.
[5] WEN Haitao, GUO Mingyu, KAN Liujie, YUAN Renguo, WANG Jianli. Element characteristics combination method of buried hill interface early warning of development wells in BZ condensate gas field [J]. Mud Logging Engineering, 2023, 34(1): 29-34.
[6] LIU Dagui, TIAN Meng, LIU Xing, YANG Lin, HE Linwei, MENG Senmiao. Application of special mud logging technology in the drilling and exploration of Xiangguosi underground gas storage [J]. Mud Logging Engineering, 2023, 34(1): 35-39.
[7] DENG Jinhui, LIU Guangming, TAN Zhongjian. Study on quantitative evaluation of lost circulation geological risk classification based on fuzzy mathematics analytic hierarchy process [J]. Mud Logging Engineering, 2023, 34(1): 40-46.
[8] WANG Jun, YUE Hongxing, QIN Bangwei, LUO Hongcheng, GONG Chao, WANG Yuekun. Study on the application of mud logging integrated geosteering technology to Jimsar shale oil [J]. Mud Logging Engineering, 2023, 34(1): 47-53.
[9] FU Dawei, GONG Liyuan, HU Desheng, ZHANG Shuai, CHEN Kui. Application of 3D quantitative fluorescence logging technology in reservoir evaluation of Wushi Sag [J]. Mud Logging Engineering, 2023, 34(1): 54-59.
[10] XIONG Ting, DENG Zhuofeng, CAO Yingquan. A method for rapid evaluation while drilling for fractured reservoirs in buried hill:A case study of HZ 26-6 Structure,Pearl River Mouth Basin [J]. Mud Logging Engineering, 2023, 34(1): 60-67.
[11] SUI Zedong, HUANG Guorong, XU Yonghua, LI Xiubin, XIE Junyu, JIN Tingke. Experimental analysis and study of gas logging interpretation method under the condition of oil-based drilling fluid:A case from the southern margin area of Junggar Basin [J]. Mud Logging Engineering, 2023, 34(1): 68-75.
[12] JIA Ran. Comprehensive evaluation of He 8 reservoirs of Lower Shihezi Formation in Su 39 block of Sulige Gas Field [J]. Mud Logging Engineering, 2023, 34(1): 76-82.
[13] REN Zhonghong, LI Te, WAN Kang, CHEN Guotao, TIAN Suhe, CHEN Xiaoming. Design and implementation of an intelligent monitoring system of drilling and workover rig [J]. Mud Logging Engineering, 2023, 34(1): 83-86.
[14] GONG Honghai, WAN Yaqi, ZHOU Faju, MENG Fange. Research and application of precise measuring device for drilling fluid outlet flow [J]. Mud Logging Engineering, 2023, 34(1): 87-93.
[15] LI Kairong, CHEN Junnan, ZHANG Yaoxian, WU Faping, YIN Xiaoming, LI Xuede. Development and application of automatic early warning blowback system for sample gas blocking of chromatograph [J]. Mud Logging Engineering, 2023, 34(1): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Mud Logging Engineering, 2010, 21(04): 1 -4 .
[2] . [J]. Mud Logging Engineering, 2010, 21(03): 71 -73 .
[3] . [J]. Mud Logging Engineering, 2010, 21(02): 8 -11,67 .
[4] . [J]. Mud Logging Engineering, 2012, 23(04): 62 -66 .
[5] . [J]. Mud Logging Engineering, 2008, 19(01): 9 -13 .
[6] . [J]. Mud Logging Engineering, 2007, 18(02): 69 -73 .
[7] . [J]. Mud Logging Engineering, 2012, 23(04): 47 -51 .
[8] . [J]. Mud Logging Engineering, 2008, 19(01): 25 -31 .
[9] . [J]. Mud Logging Engineering, 2008, 19(01): 70 -71 .
[10] . [J]. Mud Logging Engineering, 2007, 18(04): 17 -21 .