录井工程 ›› 2021, Vol. 32 ›› Issue (4): 127-132.doi: 10.3969/j.issn.1672-9803.2021.04.023

• 地质研究 • 上一篇    下一篇

黄骅坳陷下石盒子组储层特征及溶蚀孔隙成因分析

张绍辉, 刁丽颖, 吴雪松, 段润梅, 王冠, 邹磊落   

  1. ①中国石油大港油田分公司勘探开发研究院;
    ②中国石油大港油田分公司第五采油厂
  • 收稿日期:2021-10-19 出版日期:2021-12-25 发布日期:2022-01-18
  • 作者简介:张绍辉 高级工程师,1972年生,1995年毕业于江汉石油学院,现在中国石油大港油田分公司勘探开发研究院从事油气地质综合工作。通信地址:300280 天津市滨海新区大港油田勘探开发研究院。电话:(022)63958772。E-mail:29981491322@qq.com

Reservoir characteristics of the Lower Shihezi Formation in Huanghua Depression and causes of dissolved pores

ZHANG Shaohui, DIAO Liying, WU Xuesong, DUAN Runmei, WANG Guan, ZOU Leiluo   

  1. ①Exploration and Development Research Institute of PetroChina Dagang Oilfield Company,Tianjin 300280,China;
    ②No.5 Oil Production Plant of PetroChina Oilfield Company,Tianjin 300280,China
  • Received:2021-10-19 Online:2021-12-25 Published:2022-01-18

摘要: 黄骅坳陷下石盒子组砂岩储层是有望实现大港探区上古生界找油突破的重点层系,该层系储层非均质性强,勘探开发难度大。通过砂岩薄片与铸体薄片、扫描电镜观察,采用镜质体反射率及毛细管压力综合分析方法,对黄骅坳陷下石盒子组砂岩储层的岩石学特征、储集空间类型、孔隙结构特征进行研究,并探讨了下石盒子组储层溶蚀孔隙的形成机理。下石盒子组储层的储集能力主要来源于粒间溶蚀孔隙,溶蚀作用对下石盒子组储层的改造至关重要,研究表明黄骅坳陷下石盒子组储层溶蚀孔隙主要存在两种类型的形成过程:一是大气淡水淋滤溶蚀,在风化剥蚀面附近,或者地层远端出露地表,溶蚀物容易被带走,留下大块孔隙,主要发育在中部地区,如扣村、北大港地区;二是有机酸溶蚀,经过统计样品发现,下石盒子组储层溶蚀孔隙的形成中有机酸溶蚀占主导地位,主要发育在南部地区,如乌马营、王官屯地区。该研究对黄骅坳陷乃至整个渤海湾盆地二叠系下一步油气藏勘探部署具有一定的指导意义。

关键词: 黄骅坳陷, 下石盒子组, 储层特征, 孔隙结构, 溶蚀作用, 二叠系

Abstract: The sandstone reservoirs of the Lower Shihezi Formation in Huanghua Depression are the key formations expected to achieve breakthroughs in oil prospecting in the Upper Paleozoic in Dagang Exploration Area which are highly heterogeneous and difficult to explore and develop. Through sandstone, cast thin section and scanning electron microscope observation, using comprehensive analysis of vitrinite reflectance and capillary pressure, the petrological characteristics, reservoir space types, and pore structure characteristics of sandstone reservoirs of the Lower Shihezi Formation in Huanghua Depression are studied, and the formation mechanism of dissolved pores in the Lower Shihezi Formation is discussed. The reserve capacity of Lower Shihezi Formation reservoirs mainly comes from intergranular dissolution pores, and dissolution is very important to the reconstruction. Two types of formation processes for dissolved pores in Lower Shihezi Formation in Huanghua Depression are showed. Atmospheric freshwater leaching and dissolution, the dissolution is easily carried away near the weathered and denuded surface, or the exposed surface at the far end of the formation, leaving large pores, which mainly develop in the central area such as Koucun and Beidagang area. According to statistical samples, it is found that organic acid dissolution dominates the formation of dissolution pores in the Lower Shihezi Formation reservoirs, which mainly develop in southern areas such as Wumaying and Wangguantun areas. This study has certain guiding significance for the next step in the exploration and deployment of Permian oil and gas reservoirs in Huanghua Depression and Bohai Bay Basin.

Key words: Huanghua Depression, Lower Shihezi Formation, reservoir characteristics, pore structure, dissolution, Permian System

中图分类号: 

  • TE132.1
[1] 大港油田石油地质志编辑委员会.中国石油地质志(卷四)大港油田[M]. 北京:石油工业出版社,1995.
Editorial Committee of Dagang Oilfield Petroleum Geology. China petroleum geology:Dagang Oilfield(Volume 4)[M]. Beijing:Petroleum Industry Press,1995.
[2] 刘本培,全秋琪.地史学教程[M]. 北京:地质出版社,1996.
LIU Benpei,QUAN Qiuqi. Geographical history course[M]. Beijing:Geological Publishing House,1996.
[3] 侯中帅,陈世悦,鄢继华,等.大港探区上古生界沉积特征与控制因素[J]. 地球科学,2017,42(11):2055-2068.
HOU Zhongshuai,CHEN Shiyue,YAN Jihua,et al. Sedimentary characteristics and control factors of Upper Palaeozoic in Dagang Exploration Area[J]. Earth Sciences,2017,42(11):2055-2068.
[4] 赵澄林,朱筱敏.沉积岩石学[M]. 北京:石油工业出版社,2000:137-139.
ZHAO Chenglin,ZHU Xiaomin. Sedimentary petrology[M]. Beijing:Petroleum Industry Press,2000:137-139.
[5] 靳子濠,周立宏,操应长,等.渤海湾盆地黄骅坳陷二叠系砂岩储层储集特征及成岩作用[J]. 天然气地球科学,2018,29(11):1595-1606.
JIN Zihao,ZHOU Lihong,CAO Yingchang,et al. Reservoir properties and diagenesis of Permian sandstones in Huanghua Depression,Bohai Bay Basin[J]. Natural Gas Geoscience,2018,29(11):1595-1606.
[6] 金凤鸣,张凯逊,王权,等.断陷盆地深层优质碎屑岩储集层发育机理——以渤海湾盆地饶阳凹陷为例[J]. 石油勘探与开发,2018,45(2):247-254.
JIN Fengming,ZHANG Kaixun,WANG Quan,et al. Formation mechanisms of high-quality clastic reservoirs in deep formations in rifted basins: A case study of Raoyang Sag in Bohai Bay Basin[J]. Petroleum Exploration and Development,2018,45(2):247-254.
[7] 付立新,楼达,李宏军,等.印支-燕山运动对大港探区古潜山形成的控制作用[J]. 石油学报,2016,37(增刊2):19-29.
FU Lixin,LOU Da,LI Hongjun,et al. Control effect of Indosinian-Yanshan movement on the formation of buried hill in Dagang exploration area[J]. Acta Petrolei Sinica,2016,37(S2):19-29.
[8] 赖锦,王贵文,王书南,等.碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展,2013,28(1):39-50.
LAI Jin,WANG Guiwen,WANG Shunan,et al. Research status and progress of diagenetic facies in clastic rock reservoirs[J]. Advances in Earth Science,2013,28(1):39-50.
[9] 丁晓琪,韩玫梅,张哨楠,等.大气淡水在碎屑岩次生孔隙中的作用[J]. 地质评论,2014,60(1):145-158.
DING Xiaoqi,HAN Meimei,ZHANG Shaonan,et al. Roles of meteoric water on secondary porosity of siliciclastic reservoirs[J]. Geological Review,2014,60(1):145-158.
[10] 李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J]. 石油与天然气地质,2005,26(2):220-223.
LI Wenguo,ZHANG Xiaopeng,ZHONG Yumei. Formation mechanism of secondary dissolved pores in arcose[J]. Oil&Gas Geology,2005,26(2):220-223.
[11] 史基安,晋慧娟,薛莲花. 长石砂岩中长石溶解作用发育机理及其影响因素分析[J]. 沉积学报,1994,12(3):67-75.
SHI Ji'an,JIN Huijuan,XUE Lianhua. Analysis on the development mechanism and influencing factors of feldspar dissolution in feldspar sandstone[J]. Acta Sedimentologica Sinica,1994,12(3):67-75.
[1] 田伟志. 威远构造W 202井区龙马溪组页岩气储层微观孔隙结构特征[J]. 录井工程, 2022, 33(2): 141-146.
[2] 李义, 熊亭, 张伟, 程乐利. 陆丰凹陷文昌组低渗低阻储层特征及成因研究[J]. 录井工程, 2022, 33(2): 89-96.
[3] 王文庆, 李洪革, 卢刚臣, 闫家伟, 杨爱敏. 黄骅坳陷莲花凝析气田的发现及其地质意义[J]. 录井工程, 2022, 33(1): 134-140.
[4] 王冠, 刁丽颖, 刘国全, 邹磊落, 赵玥, 张绍辉, 董晓伟. 黄骅坳陷斜坡区耦合控产规律与有序成藏模式[J]. 录井工程, 2021, 32(3): 130-135.
[5] 姚芳, 卢异, 王东林, 王亚静, 钟小刚, 马东博, 赵坤山, 周莹. 黄骅坳陷上古生界古构造恢复[J]. 录井工程, 2021, 32(1): 114-119.
[6] 汪晓敏, 邵徽发, 王永凯, 周凤春, 高莉津. 黄骅坳陷地温场控制因素与地热资源潜力[J]. 录井工程, 2020, 31(S1): 125-129.
[7] 王娜, 牟连刚, 董雄英, 白晶, 林常梅, 周静, 何川, 刘会纺, 李昊东. 上古生界煤系烃源岩显微组分组成及生烃特征——以渤海湾盆地石炭-二叠系烃源岩为例[J]. 录井工程, 2020, 31(S1): 100-107.
[8] 秦平, 郭广峰, 齐跃敏, 胡洋, 陈贺. 二连盆地乌兰花凹陷混合花岗岩潜山油藏储集层评价与分布规律研究[J]. 录井工程, 2020, 31(2): 124-129.
[9] 王文庆, 李振永, 朱梓强, 左黄金, 闫家伟. 港北多层系潜山油气成藏再认识与勘探实践[J]. 录井工程, 2019, 30(3): 138-142.
[10] 杨光. 福山凹陷YN背斜流一段低渗透率储集层微观孔隙特征[J]. 录井工程, 2019, 30(3): 165-169.
[11] 朱红涛. 南盘江坳陷JZ 1井目的层未钻遇油气原因探析[J]. 录井工程, 2019, 30(2): 6-9.
[12] 梁斌, 王喜梅, 曾济楚, 王权国, 魏玉红, 唐万宇. CT扫描技术在岩心微观驱油特征分析中的应用[J]. 录井工程, 2019, 30(2): 34-37.
[13] 张卫江, 成洪文, 林学春, 刘艳芬, 贾帆. 黄骅坳陷马东地区沙一段沉积微相研究与划分[J]. 录井工程, 2018, 29(2): 97-101.
[14] 张凡磊,周宗良,肖建玲,李秋媛. 黄骅坳陷中北区多元复合成因浅层气藏与序列[J]. 录井工程, 2017, 28(04): 110-114.
[15] 苑洪瑞 李洪山 杨 森. 核磁共振录井参数与孔隙结构关系及其在长庆油田的应用[J]. 录井工程, 2016, 27(04): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 滕工生 杨光照 修天竹. 随钻X射线衍射分析仪在吉林探区的试验与应用[J]. 录井工程, 2012, 23(04): 6 -9 .
[2] 韩 志 永 . SD油田录井、测井解释互补性研究的几点认识[J]. 录井工程, 2012, 23(04): 52 -57 .
[3] 赵 冬 云. 环保生物酶驱油技术在大港油田的应用[J]. 录井工程, 2012, 23(04): 74 -78 .
[4] 张国田 郑新卫 王丹丹 孟祥文. X射线荧光元素录井在辽河油田的应用[J]. 录井工程, 2012, 23(04): 10 -16 .
[5] 寇海亮 张丽艳. 北部凹陷新安村组、乌云组储集层解释评价[J]. 录井工程, 2012, 23(04): 36 -39 .
[6] 程 峰 赵电波 孟祥文 刘江华 孙海波 冀建国 . 提高色谱仪全烃检测稳定性的研讨[J]. 录井工程, 2012, 23(04): 67 -68 .
[7] 付东立 马建英 于长华 侯国文 刘娟霞 唐慕石. 港中浅层低电阻率油层成因及识别方法[J]. 录井工程, 2010, 21(04): 55 -59 .
[8] 唐金祥 卢永强 张 峰 陈中普. 国际录井项目服务队伍当地化的实施方法探讨[J]. 录井工程, 2010, 21(02): 48 -50,60 .
[9] 黄新林① 王国瓦① 苟柱明① 吕君②. 塔里木油田三维定量荧光录井技术研究与应用[J]. 录井工程, 2007, 18(02): 13 -16 .
[10] 孔 郁 琪. 地化录井在松辽盆地黑帝庙油层原油性质判别中的应用[J]. 录井工程, 2012, 23(04): 40 -43 .