录井工程 ›› 2022, Vol. 33 ›› Issue (2): 89-96.doi: 10.3969/j.issn.1672-9803.2022.02.016

• 地质研究 • 上一篇    下一篇

陆丰凹陷文昌组低渗低阻储层特征及成因研究

李义, 熊亭②③, 张伟, 程乐利④⑤   

  1. ①中海油服油田技术事业部深圳作业公司;
    ②中海石油(中国)有限公司深圳分公司;
    ③长江大学地球科学学院;
    ④长江大学录井技术与工程研究院;
    ⑤油气资源与探测国家重点实验室
  • 收稿日期:2022-04-23 出版日期:2022-06-25 发布日期:2022-07-11
  • 作者简介:李义 工程师,1985年生,2008年毕业于大庆石油学院勘查技术与工程专业,现在中海油服油田技术事业部深圳作业公司从事市场管理工作。通信地址:518067 广东省深圳市南山区中海油大厦。电话:18601068642。E-mail:liyi13@cosl.com.cn
  • 基金资助:
    中国海洋石油集团有限公司科研项目“南海东部油田上产2000万吨关键技术研究”(编号:CN00C-KJ135ZDXM37SZ);油气资源与探测国家重点实验室开放课题“典型陆相页岩油甜点成因及评价方法研究——以吉木萨尔芦草沟组为例”(编号:PRP/open-2104)

Study on characteristics and genesis of low-permeability and low-resistivity reservoirs in Wenchang Formation of Lufeng sag

LI Yi, XIONG Ting②③, ZHANG Wei, CHENG Leli④⑤   

  1. ①Shenzhen Operating Company of Well-Tech Department, COSL, Shenzhen,Guangdong 518067, China;
    ②Shenzhen Branch of CNOOC(China) Co., Ltd., Shenzhen, Guangdong 518067,China;
    ③School of Geosciences, Yangtze University , Wuhan, Hubei 430100, China;
    ④Institute of Mud Logging Technology and Engineering, Yangtze University, Jingzhou, Hubei 434023, China;
    ⑤State Key Laboratory of Petroleum Resources and Prospecting, Beijing 102249,China
  • Received:2022-04-23 Online:2022-06-25 Published:2022-07-11

摘要: 陆丰凹陷古近系深层发现大量低渗低阻储层,其孔渗关系复杂、流体性质识别困难,制约了勘探开发进程。以岩石学和物性资料为基础,结合沉积和成岩等多方面研究,对陆丰凹陷文昌组低渗低阻储层的特征和成因开展研究。文昌组储层以岩屑石英砂岩为主,储集空间以次生孔隙为主,由中-小孔和细喉道组成,同类粒度样品的孔渗相关性较好,根据毛细管曲线形态可分为高进汞饱和度、低排驱压力,中等进汞饱和度、中等排驱压力和中进汞饱和度、中-高排驱压力三类。沉积环境以近源辫状河三角洲水下分流河道为主,砂岩成分成熟度和结构成熟度较低,储层质量受沉积条件控制;压实作用造成原生孔隙大量减少,胶结物充填粒间导致物性进一步变差,是造成低孔、低渗的主因。研究结果表明,储层岩性变化快,孔隙结构复杂,孤立孔隙多和联通性差导致束缚水含量较高,以及地层水矿化度高的共同影响,是研究区低对比度储层的发育机理。该认识对本区后续勘探开发作业具有一定的指导作用。

关键词: 珠江口盆地, 陆丰凹陷, 文昌组, 低渗低阻, 储层特征, 储层成因

Abstract: A large number of low-permeability and low-resistivity reservoirs have been found in the deep Paleogene formation of Lufeng sag. The complicated relationship between porosity and permeability and the difficulty in identifying fluid properties restricted the exploration and development process. Based on petrology and physical property data, and combined with sedimentary and diagenetic studies, the characteristics and genesis of low-permeability and low-resistivity reservoirs in Wenchang Formation of Lufeng sag were studied. The reservoirs of Wenchang Formation are dominated by lithic quartzose sandstone, the storage spaces are mainly secondary pores, composed of medium-small pores and fine throats, the porosity-permeability correlation of samples of the same particle size is good. According to the capillary curve shape, it can be divided into three categories: high mercury saturation & low displacement pressure, medium mercury saturation & medium displacement pressure, and medium mercury saturation & medium-high displacement pressure. The sedimentary environment was dominated by near-source braided river delta underwater distributary channel, the compositional maturity and textural maturity of the sandstone are low, and the reservoir quality is controlled by the sedimentary conditions. The major cause of the low-porosity and low-permeability is that the primary pores are greatly reduced due to compaction, and the physical properties are further deteriorated due to cement filling the pores between particles. The results show that the development mechanism of low-contrast reservoirs in the study area is the combination of rapid lithology change, complex pore structure, high bound water content due to more isolated pores and poor connectivity, and high salinity of formation water. This understanding has a certain guiding effect on the follow-up exploration and development in this area.

Key words: Pearl River Mouth Basin, Lufeng sag, Wenchang Formation, low-permeability and low-resistivity, reservoir characteristics, reservoir genesis

中图分类号: 

  • TE 132.1
[1] 梁玉楠,钟华明,骆玉虎,等. 珠江口盆地低阻低渗储层测井渗透率预测方法及应用[J]. 海洋地质前沿,2019,35(11):28-34.LIANG Yunan, ZHONG Huaming, LUO Yuhu, et al. Application of permeability prediction method to low-resistivity and low-permeability reservoirs in Pearl River Estuary Basin[J]. Marine Geological Frontiers,2019,35(11):28-34.
[2] 操应长,马奔奔,王艳忠,等. 渤南洼陷北带沙四上亚段储层低渗成因机制及分类评价[J]. 天然气地球科学,2013,24(5):865-878.CAO Yingchang, MA Benben, WANG Yanzhong, et al. Genetic mechanisms and classified evaluation of low permeability reservoirs of Es4s in the north zone of Bonan Sag[J]. Natural Gas Geoscience,2013,24(5):865-878.
[3] 李珊珊,彭松,陈林,等. 珠江口盆地西部文昌B凹陷晚始新-早渐新世复杂储层沉积特征及低渗成因探讨[J]. 现代地质,2019,33(2):357-369.LI Shanshan, PENG Song, CHEN Lin, et al. A review on the complex reservoir sedimentary characteristics and low permeability formation of the Upper Eocene to Lower Oligocene in the Wenchang B Sag, Pearl River Estuary Basin[J]. Geoscience.2019,33(2):357-369.
[4] 高辉,孙卫,宋广寿,等. 鄂尔多斯盆地合水地区长8储层特低渗透成因分析与评价[J]. 地质科技情报,2008,27(5):71-76.GAO Hui, SUN Wei, SONG Guangshou, et al. Origin analysis of extra low-permeability and evaluation of Chang 8 reservoir in Heshui area of Ordos Basin[J]. Geological Science and Technology Information,2008,27(5):71-76.
[5] 张创,高辉,孙卫,等. 西峰油田庄58区块长8储层特低渗透成因[J]. 断块油气田,2009,16(2):12-16.ZHANG Chuang, GAO Hui, SUN Wei, et al. Genesis of extra-low permeability for Chang 8 reservoir of Block Zhuang 58 in Xifeng Oilfield[J]. Fault-Block Oil &Gas Field,2009,16(2):12-16.
[6] 高辉,宋广寿,孙卫,等. 储层特低渗透成因分析与评价——以安塞油田沿25区块为例[J]. 地球科学进展,2007,22(11):1134-1140.GAO Hui, SONG Guangshou, SUN Wei, et al. Origin analysis of extra low-permeability and evaluation for example reservoir in the Yan25 area of Ansai Oil Field[J]. Advances in Earth Science,2007,22(11):1134-1140.
[7] 强昆生,王建民,冯永春,等. 鄂尔多斯盆地志丹油田永宁探区长6储层特低渗成因及主控因素[J]. 沉积与特提斯地质, 2011,31(2):82-90.QIANG Kunsheng, WANG Jianmin, FENG Yongchun,et al. Origin of extra-low permeability and controlling factors of the Chang-6 reservoirs in the Yongning prospect area, Zhidan Oil Field, Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(2):82-90.
[8] 廖明光,苏崇华,唐洪,等. 砂泥岩薄互层低阻油层地质成因——以珠江口盆地A油藏M1油组为例[J]. 新疆石油地质,2010,31(2):154-157.LIAO Mingguang, SU Chonghua, TANG Hong, et al. Geological genesis of low resistivity formation with thin sand-shale interlayer: An example from M1 oil measure of A reservoir in Pearl River Mouth Basin[J]. Xinjiang Petroleum Geology,2010,31(2):154-157.
[9] 廖明光,唐洪,苏崇华,等. W低阻油藏高不动水饱和度的成因及对低阻油层的影响[J]. 石油实验地质,2010,32(4):353-357.LIAO Mingguang, TANG Hong, SU Chonghua, et al. Genesis of high immobile water saturation in the W low resistivity reservoirs and its influence on the low resistivity reservoir[J]. Petroleum Geology & Experiment,2010,32(4):353-357.
[10] 景成杰,胡望水,高楚桥,等. 红岗油田高台子油藏低阻油层分布规律及成因研究[J]. 石油天然气学报,2008,30(2):39-42.JING Chengjie, HU Wangshui, GAO Chuqiao, et al. Distribution rules and its genesis of low-resistivity pay zones in Gaotaizi reservoir of Honggang Oilfield[J]. Journal of Oil and Gas Technology,2008,30(2):39-42.
[11] 徐锦绣,吕洪志,刘欢,等. 渤海LD油田低阻油层成因机理与评价方法[J]. 中国海上油气,2018,30(3):47-55.XU Jinxiu, LYU Hongzhi, LIU Huan, et al. Genesis mechanism and evaluation methods for low-resistivity oil layers in the Bohai LD oilfield[J]. China Offshore Oil and Gas,2018,30(3):47-55.
[12] 王绪诚,于水明,姜建,等. 恩平凹陷新近系低阻油层地质成因分析[J]. 科技通报,2018,34(5):11-15.WANG Xucheng, YU Shuiming, JIANG Jian, et al. Geological origin of the Neogene low-resistivity oil layers in well E8, Enping Sag[J]. Bulletin of Science and Technology,2018,34(5):11-15.
[13] 马晓丽,王洪君,李军建,等. 低阻油层成因分析及识别方法——以鄂尔多斯盆地盐池地区延长组长4+5段为例[J]. 地质学刊,2019,43(2):275-281.MA Xiaoli, WANG Hongjun, LI Junjian, et al. Genetic analysis and identification method of low resistivity oil reservoirs: A case study of Chang4+5 Member of Yanchang Formation in Yanchi area, Ordos Basin[J]. Journal of Geology,2019,43(2):275-281.
[14] 况军,姚根顺,朱国华,等. 准噶尔盆地陆西地区白垩系吐谷鲁群低阻油层成因及其地质意义[J]. 海相油气地质,1997,6(4):53-57.KUANG Jun, YAO Genshun, ZHU Guohua, et al. Genesis and geological significance of low resistivity oil reservoirs in Cretaceous Tugulu Group in Luxi area, Junggar Basin[J]. Marine Origin Petroleum Geology, 1997, 6(4):53-57.
[15] 蒋钱涛,张伟,白林坤,等. 基于录井资料的浅层低阻油层随钻识别及评价——以珠江口盆地恩平凹陷韩江组为例[J]. 长江大学学报:自然科学版,2020,17(4):16-22.JIANG Qiantao, ZHANG Wei, BAI Linkun, et al. Identification and evaluation of shallow low resistivity reservoirs while drilling based on mud logging data: Taking Hanjiang Formation in Enping Sag, Pearl River Mouth Basin as an example[J]. Journal of Yangtze University(Natural Science Edition),2020,17(4):16-22.
[16] 王正,岳绍飞,雷霄,等.珠江口盆地文昌区珠江组“双低”油组电阻率下限调整[J]. 大庆石油地质与开发,2021,40(3):143-150.WANG Zheng, YUE Shaofei, LEI Xiao, et al. The adjustment of low limit of resistivity of the " double-low " oil-group in Zhujiang Formation of Wenchang area, Pearl River Mouth Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(3):143-150.
[17] 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):447-461.SHI Hesheng, DU Jiayuan, MEI Lianfu, et al. Huizhou Movement and its significance in Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development,2020,47(3):447-461.
[18] 葛家旺,朱筱敏,吴陈冰洁,等. 辫状河三角洲沉积特征及成因差异——以珠江口盆地陆丰凹陷恩平组为例[J]. 石油学报,2019,40(增刊1):139-152.GE Jiawang, ZHU Xiaomin, WU Chenbingjie, et al. Sedimentary characteristics and genetic difference of braided delta: A case study of Enping Formation in Lufeng sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2019,40(S1):139-152.
[19] 刘强虎,朱红涛,舒誉,等. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制[J]. 石油学报, 2015, 36(3):286-299.LIU Qianghu, ZHU Hongtao, SHU Yu, et al. Provenance systems and their control on the beach-bar of Paleogene Enping Formation, Enping sag,Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2015,36(3):286-299.
[20] 张丽丽,舒梁锋,冯轩,等. 再论珠江口盆地恩平组时代归属[J]. 中国海上油气,2020,32(5):9-18.ZHANG Lili, SHU Liangfeng, FENG Xuan, et al. Further discussion on the age assignment of Enping Formation in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas,2020,32(5):9-18.
[21] 周凤娟,丁琳,马永坤,等. 陆丰13东洼文昌组碎屑锆石U-Pb年龄特征及其物源示踪意义[J]. 中国海上油气,2020,32(4):46-55.ZHOU Fengjuan, DING Lin, MA Yongkun, et al. Detrital zircon U-Pb age characteristics of Wenchang Formation in Lufeng 13 eastern sag and its significance for provenance tracing[J]. China Offshore Oil and Gas,2020,32(4):46-55.
[22] 林鹤鸣,刘培,汪旭东,等. 珠一坳陷始新世文昌组沉积期构造转换对源-汇体系的控制[J]. 大地构造与成矿学,2021,45(1):188-200.LIN Heming, LIU Pei, WANG Xudong, et al. Influences of structural transformation on source-to-sink system during the depositional period of Wenchang Formation of Eocene in the ZhuⅠ Depression[J]. Geotectonica et Metallogenia,2021,45(1):188-200.
[23] 葛家旺,朱筱敏,张向涛,等. 珠江口盆地陆丰凹陷文昌组构造-沉积演化模式[J]. 中国矿业大学学报,2018,47(2):308-322.GE Jiawang, ZHU Xiaomin, ZHANG Xiangtao, et al. Tectono-sedimentation model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology,2018,47(2):308-322.
[24] 吕正祥,文艺,赵福,等. 珠一坳陷陆丰地区文昌组成岩作用特征及孔隙发育成因[J]. 特种油气藏,2019,26(3):18-23.LYU Zhengxiang, WEN Yi, ZHAO Fu, et al. Diagenesis and pore genesis of Wenchang Formation in Lufeng of Zhuyi Depression[J]. Special Oil & Gas Reservoirs,2019,26(3):18-23.
[25] 汪旭东,张向涛,何敏,等. 珠江口盆地陆丰凹陷南部文昌组储层发育特征及其控制因素[J]. 石油与天然气地质,2017,38(6):1147-1155.WANG Xudong, ZHANG Xiangtao, HE Min, et al. Characteristics and controlling factors of reservoir development in the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology,2017,38(6):1147-1155.
[1] 曹英权, 熊亭, 袁胜斌, 汪芯. 特色录井技术在低孔渗储层解释评价中的应用——以陆丰凹陷古近系为例[J]. 录井工程, 2022, 33(2): 52-57.
[2] 张绍辉, 刁丽颖, 吴雪松, 段润梅, 王冠, 邹磊落. 黄骅坳陷下石盒子组储层特征及溶蚀孔隙成因分析[J]. 录井工程, 2021, 32(4): 127-132.
[3] 白林坤, 罗迎春, 蒋钱涛, 熊亭, 袁胜斌, 程乐利. 珠江口盆地陆丰凹陷文昌组FLAIR录井解释新方法[J]. 录井工程, 2021, 32(3): 84-90.
[4] 熊亭, 吴勇钢, 罗迎春, 白林坤, 蒋钱涛, 程乐利. 三维定量荧光图谱法在陆丰凹陷储集层流体性质快速识别中的应用[J]. 录井工程, 2021, 32(2): 19-25.
[5] 代一丁 孙金山 李建周 杜克拯 . 中国深水录井工程实践与发展方向探讨[J]. 录井工程, 2014, 25(04): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王洪伟 杨光照 薜 岩 姬月凤 季 艳 . 气测录井资料随钻自动实时解释系统的研制与开发[J]. 录井工程, 2012, 23(04): 26 -30 .
[2] 邵东波 王志峰 张丛秀 刘 璐 孙素芳 杨清宇 赵保华. “三低”高含水气藏录井解释评价方法[J]. 录井工程, 2010, 21(02): 17 -21 .
[3] 李 国 红. C1/ΣC参数在D84区块水平井录井中的应用[J]. 录井工程, 2007, 18(04): 60 -61 .
[4] 文爱民 田相斋 董高桢. 现场录井资料数字化处理系统的研究与开发[J]. 录井工程, 2007, 18(01): 39 -42 .
[5] 关 玉 新. 加强井涌监测预报实现井控安全[J]. 录井工程, 2010, 21(03): 35 -38 .
[6] 成 萍 周文君 胥仁强 姚 宏 . 气测后效油气上窜高度计算方法完善[J]. 录井工程, 2010, 21(01): 26 -28 .
[7] 阎治全 张丙生 钱文博 刘 青 赵新颖 刘伟刚 刘海越 . 岩屑数字图像采集分析技术应用研究[J]. 录井工程, 2012, 23(04): 58 -61 .
[8] 曹 凤 俊. 综合录井数据处理方法[J]. 录井工程, 2007, 18(03): 49 -51,56 .
[9] 李玉桓 刘建英 刘慧英. 轻烃录井技术的理论基础和应用原理[J]. 录井工程, 2010, 21(01): 1 -4 .
[10] 刘 俊 山. 利用全烃和伽马曲线形态优选压裂层段方法[J]. 录井工程, 2010, 21(03): 25 -27,32 .