录井工程 ›› 2023, Vol. 34 ›› Issue (1): 121-129.doi: 10.3969/j.issn.1672-9803.2023.01.019

• 地质研究 • 上一篇    下一篇

录井技术在渤海油田太古界变质岩裂缝识别中的应用

李战奎, 郭明宇, 马金鑫, 刘广明, 张恒, 魏雪莲   

  1. ①中海油能源发展股份有限公司工程技术分公司;
    ②中海石油(中国)有限公司天津分公司
  • 收稿日期:2023-02-01 出版日期:2023-03-25 发布日期:2023-04-14
  • 作者简介:李战奎 高级工程师,1986年生,2009年毕业于中国地质大学(北京)资源勘查工程专业,现主要从事海上油气勘探管理和现场地质录井工作 通信地址:300459 天津市滨海新区海川路2121号渤海石油管理局C座 电话:(022)66502138 E-mail:lizhk@cnooc.com.cn
  • 基金资助:
    中海石油(中国)有限公司“七年行动计划”重大科技专项“渤海油田上产4000万吨新领域勘探关键技术”部分研究成果(编号:CNOOC-KJ-135-ZDXM36-TJ-08-TJ)”

Fracture identification mud logging technology and application to Archean metamorphic reservoirs in Bohai Oilfield

LI Zhankui, GUO Mingyu, MA Jinxin, LIU Guangming, ZHANG Heng, WEI Xuelian   

  1. ①CNOOC Ener Tech-Drilling & Production Co., Tianjin 300459, China;
    ②Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2023-02-01 Online:2023-03-25 Published:2023-04-14

摘要: 渤海油田对于太古界潜山的勘探开发力度逐步增大,先后发现并开发了JZ 25-1南太古界潜山油气藏、BZ 19-6特大型潜山凝析气藏,有力证实渤海油田太古界潜山具备极高的勘探潜力。太古界潜山岩性以变质花岗岩为主,油气储集空间主要为裂缝,裂缝发育程度对油气藏规模评价影响巨大,所以实现太古界变质岩裂缝的快速识别对勘探作业快速决策具有重要意义。通过研究发现,太古界潜山裂缝研究大多聚焦于变质岩储层的储集空间表征、裂缝表征、控制因素、储层分带和测井评价等方面,缺乏录井技术定量识别裂缝的研究。采用钻井参数曲线交会法、井漏法、岩心观察法、壁心观察法、岩屑微观特征法、薄片鉴定描述法将太古界变质岩裂缝分级描述为米级裂缝、毫米-厘米级裂缝、微米级裂缝、致密段4个级别。其在渤海油田近30口井的成功应用,为潜山油气勘探重大突破起到了关键的作用,对太古界变质岩潜山油气勘探的随钻决策具有重要意义。

关键词: 太古界潜山, 变质岩储层, 裂缝分级, 录井技术, 渤海油田

Abstract: The exploration and development of the Archean buried hill in Bohai Oilfield has gradually increased, and the Jinzhou 25-1 South Archean buried hill oil & gas reservoirs and Bozhong 19-6 extra-large buried hill condensate gas reservoirs have been discovered and developed successively, which strongly confirmed that the Archaean buried hill in Bohai Oilfield has high exploration potential. The lithology of Archean buried hill is mainly metamorphic granite, and the oil & gas reservoir space is mainly fractures. The development degree of fractures has a great impact on the evaluation of the scale of oil & gas reservoirs. Therefore, the rapid identification of Archean metamorphic rock fractures is of great significance to the rapid decision-making of exploration operations. It is found that the study of Archean buried hill fractures mostly focuses on the characterization of metamorphic rock reservoir space, fracture characterization, control factors, reservoir zoning and logging evaluation, and lacks the study of quantitative identification of fractures by mud logging technology.This paper classifies and describes the Archean metamorphic rock fractures into four categories, namely, meter scale fractures, millimeter-centimeter scale fractures, micron scale fractures and dense segments, through the intersection of drilling parameter curves,lost circulation method, core observation method, wall core observation method, micro-characteristic method of cuttings, and thin section identification description method. The successful application of nearly 30 wells to Bohai Oilfield has played a key role in the major breakthrough of buried hill oil and gas exploration, and is of great significance to the decision-making while drilling of oil and gas exploration in Archean metamorphic buried hill.

Key words: Archean buried hill, metamorphic reservoir, crack classification, mud logging technology, Bohai Oilfield

中图分类号: 

  • TE132.1
[1] 周心怀,王清斌,冯冲,等.渤海海域大型太古界潜山储层形成条件及地质意义[J].地球科学,2022,47(5):1534-1548.
ZHOU Xinhuai, WANG Qingbin, FENG Chong, et al.Formation conditions and geological significance of large Archean buried hill reservoirs in Bohai sea[J]. Earth Science,2022,47(5):1534-1548.
[2] 刘宗宾,程奇,吕坐彬,等.渤海海域锦州南油田太古宇变质岩潜山储层特征及其发育模式[J].吉林大学学报(地球科学版),2022,52(3):829-839.
LIU Zongbin, CHENG Qi, LYU Zuobin, et al.Reservoir characteristics and development model of Archean metamorphic buried hill in Jinzhou south oilfield, Bohai sea[J].Journal of Jilin University (Earth Science Edition),2022,52(3):829-839.
[3] 徐长贵,杜晓峰,刘晓健,等.渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义[J].石油与天然气地质,2020,41(2):235-247,294.
XU Changgui, DU Xiaofeng, LIU Xiaojian, et al.Formation mechanism of high-quality deep buried-hill reservoir of Archaean metamorphic rocks and its significance in petroleum exploration in Bohai Sea area[J].Oil & Gas Geology,2020,41(2):235-247,294.
[4] 窦立荣,魏小东,王景春,等.乍得Bongor 盆地花岗质基岩潜山储层特征[J].石油学报,2015,36(8):897-904,925.
DOU Lirong, WEI Xiaodong, WANG Jingchun, et al.Characteristics of granitic basement rock buried-hill reservoir in Bongor Basin, Chad[J].Acta Petrolei Sinica,2015,36(8):897-904,925.
[5] 高先志,陈振岩,邹志文,等.辽河西部凹陷兴隆台高潜山内幕油气藏形成条件和成藏特征[J].中国石油大学学报(自然科学版),2007,31(6):6-9.
GAO Xianzhi, CHEN Zhenyan, ZOU Zhiwen, et al.Forming conditions and accumulation features of oil pools within the inner of highly buried-hills of Xinglongtai in west sag of Liaohe depression[J].Journal of China University of Petroleum(Edition of Natural Sciences),2007,31(6):6-9.
[6] 宋柏荣,胡英杰,边少之,等.辽河坳陷兴隆台潜山结晶基岩油气储层特征[J].石油学报,2011,32(1):77-82.
SONG Bairong, HU Yingjie, BIAN Shaozhi, et al.Reservoir characteristics of the crystal basement in the Xinglongtai buried-hill, Liaohe Depression[J].Acta Petrolei Sinica,2011,32(1):77-82.
[7] 周心怀,项华,于水,等.渤海锦州南变质岩潜山油藏储集层特征与发育控制因素[J].石油勘探与开发,2005,32(6):17-20.
ZHOU Xinhuai, XIANG Hua, YU Shui, et al.Reservoir characteristics and development controlling factors of JZS Neo-Archean metamorphic buried hill oil pool in Bohai Sea[J].Petroleum Exploration and Development,2005,32(6):17-20.
[8] 朱毅秀,王欢,单俊峰,等.辽河坳陷茨榆坨潜山太古界基岩储层岩性和储集空间特征[J].石油与天然气地质,2018,39(6):1225-1236.
ZHU Yixiu, WANG Huan, SHAN Junfeng, et al.Reservoir lithology and space characteristics of the Archaeozoic basement rock in Ciyutuo buried hill, Liaohe Depression[J].Oil & Gas Geology,2018,39(6):1225-1236.
[9] 童凯军,赵春明,吕坐彬,等.渤海变质岩潜山油藏储集层综合评价与裂缝表征[J].石油勘探与开发,2012,39(1):56-63.
TONG Kaijun, ZHAO Chunming, LYU Zuobin, et al.Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay[J].Petroleum Exploration and Development.2012,39(1):56-63.
[10] 贾海松. BZ气田变质岩潜山储层特征研究[J].石油地质与工程,2019,33(5):1-4.
JIA Haisong.Reservoir characteristics of metamorphic buried hill in BZ Gas Field[J].Petroleum Geology & Engineering,2019,33(5):1-4.
[11] 朱伟林,米立军.中国海域含油气盆地图集[M].北京:石油工业出版社,2010:12.
ZHU Weilin, MI Lijun.Atlas of oil and gas basins, China Sea[M].Beijing: Petroleum Industry Press,2010:12.
[12] 姜晓宇,张研,甘利灯,等.花岗岩潜山裂缝地震预测技术[J].石油地球物理勘探,2020,55(3):694-704.
JIANG Xiaoyu, ZHANG Yan, GAN Lideng, et al.Seismic techniques for predicting fractures in granite buried hills[J].Oil Geophysical Prospecting,2020,55(3):694-704.
[13] TIMUR A.Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones[J].Journal of Petroleum Technology,1969,21(6):775-786.
[14] DUNSMUIR J H,FERGUSON S R,D′AMICO K L,et al. X-ray microtomography: A new tool for the characterization of porous media[C]//SPE 22860,1991.
[15] 许同海. 致密储层裂缝识别的测井方法及研究进展[J].油气地质与采收率,2005,12(3):75-78.
XU Tonghai.Logging method and its research progress in fracture identification of tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2005,12(3):75-78.
[16] 周灿灿,杨春顶.砂岩裂缝的成因及其常规测井资料综合识别技术研究[J].石油地球物理勘探,2003,38(4):425-430.
ZHOU Cancan, YANG Chunding.Research on genesis of sandstone fractures and comprehensive identification technology of conventional logging data[J]. Oil Geophysical Prospecting,2003,38(4):425-430.
[17] 刘朋波,蒲仁海,潘仁芳,等.多方位AVO技术在裂缝检测中的应用[J].石油地球物理勘探,2008,43(4):437-442.
LIU Pengbo, PU Renhai, PAN Renfang, et al.Application of multi-azimuth AVO technique in fractural detection[J]. Oil Geophysical Prospecting,2008,43(4):437-442.
[18] 李军,郝天珧,赵百民.地震与测井数据综合预测裂缝发育带[J].地球物理学进展,2006,21(1):179-183.
LI Jun, HAO Tianyao, ZHAO Baimin.Synthetic predication of favorable fracture zone from seismic and log data[J].Progress in Geophysics,2006,21(1):179-183.
[19] 张福明,侯颖,朱明,等.火山岩储层测井评价技术现状及发展趋势[J].地球物理学进展,2016,31(4):1732-1751.
ZHANG Fuming, HOU Ying, ZHU Ming, et al.Present situation and development trend prospect in volcanic reservoir evaluation based on well logging data[J].Progress in Geophysics,2016,31(4):1732-1751.
[20] 阚留杰,毛敏,陈伟,等.渤海油田潜山界面识别录井技术及其组合[J].录井工程,2016,27(3):79-83.
KAN Liujie, MAO Min, CHEN Wei, et al.Identification of buried hill interface mud logging technology and its combination in Bohai Oilfield[J]. Mud Logging Engineering, 2016,27(3):79-83.
[21] 尚锁贵,谭忠健,阚留杰,等. 元素录井岩性识别技术及其在渤海油田的应用[J].中国海上油气,2016,28(4):30-34.
SHANG Suogui, TAN Zhongjian, KAN Liujie, et al.Lithology identification technology of element logging and its application in Bohai Oilfield[J]. China Offshore Oil and Gas,2016,28(4):30-34.
[22] 汪芯,郭明宇,李鸿儒,等.基于录测资料的变质岩潜山优质储集层预测方法及其应用[J].录井工程,2021,32(1):73-79.
WANG Xin, GUO Mingyu, LI Hongru, et al.Prediction method of high quality reservoir in metamorphic buried hill based on log data and its application[J].Mud Logging Engineering,2021,32(1):73-79.
[23] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J].岩性油气藏,2020,32(6):129-137.
REN Jie.Conventional logging evaluation method for carbonate fractured reservoir[J].Lithologic Reservoirs,2020,32(6):129-137.
[24] 张会利. 钻井现场井涌井漏事故原因分析及对策研究[J].西部探矿工程,2022,34(9):107-108.
ZHANG Huili.Cause analysis and counter measure study of kick and loss accident in drilling site[J]. West-China Exploration Engineering,2022,34(9):107-108.
[25] 姜自然,陆正元,刘斐,等.川西坳陷新场气田须家河组宽大裂缝及其油气地质意义[J/OL].[2022-07-22].https://kns.cnki.net/kcms/detail/51.1634.n.20220721.1648.002.html.
JIANG Ziran, LU Zhengyuan, LIU Fei, et al. Broad fractures in Xujiahe Formation, Xinchang Gas Field, western Sichuan Depression and their petroleum geological significance[J/OL].[2022-07-22].https://kns.cnki.net/kcms/detail/51.1634.n.20220721.1648.002.html.
[26] 田志宾,冯永仁,魏赞庆,等.国内外大直径岩心旋转井壁取心技术现状及发展趋势[J].国外测井技术,2019,40(5):33-36.
TIAN Zhibin, FENG Yongren, WEI Zanqing, et al.Current status and development trend of rotary sidewall coring technology for large diameter core at home and abroad[J]. World Well Logging Technology,2019,40(5):33-36.
[27] 邓强,谭忠健,尚锁贵,等.旋转井壁取心工具及其在渤海油田勘探中的应用[J].石油科技论坛,2012,31(1):20-24.
DENG Qiang, TAN Zhongjian, SHANG Suogui, et al.Rotary sidewall coring tool and its application in Bohai oilfield exploration[J].Petroleum Science and Technology Forum,2012,31(1):20-24.
[28] 胡斌,郭素杰,于海军,等.杨税务潜山奥陶系储集层岩石微观特征研究[J].录井工程,2020,31(2):118-123.
HU Bin, GUO Sujie, YU Haijun, et al.Study on the rock micro-characteristics of Ordovician reservoir in Yangshuiwu buried hill[J].Mud Logging Engineering,2020,31(2):118-123.
[1] 付大巍, 宫立园, 胡德胜, 张帅, 陈奎. 三维定量荧光录井技术在乌石凹陷油层评价中的应用[J]. 录井工程, 2023, 34(1): 54-59.
[2] 何理鹏, 汪芯, 李重逢, 邓卓峰. 南海A油田古近系低孔低渗储层录井评价方法研究[J]. 录井工程, 2022, 33(4): 69-74.
[3] 张学忠, 向晓, 张国兵, 杨凯程, 权骋, 黄万国. 数智化录井技术在长庆油田苏南区块的研发应用[J]. 录井工程, 2022, 33(3): 1-6.
[4] 张振杰, 苏进昌, 李展峰, 瞿朝朝, 闫建丽. 随钻测压技术在渤海油田开发中的应用[J]. 录井工程, 2022, 33(1): 51-55.
[5] 赵文睿. 南堡凹陷东营组录井解释评价方法研究与应用[J]. 录井工程, 2021, 32(4): 73-78.
[6] 张向前, 谭忠健, 邓津辉, 曹军, 苑仁国, 袁亚东, 赵才顺. 地球物理方法在渤中34油田井漏预测中的应用[J]. 录井工程, 2021, 32(3): 141-146.
[7] 刘有武, 许宪金, 满安静, 熊耀华, 靳峰. XRF录井技术在砂岩型铀矿勘探中的应用[J]. 录井工程, 2021, 32(3): 17-24.
[8] 苏伟明. 元素录井技术在塔中奥陶系碳酸盐岩地层中的应用[J]. 录井工程, 2021, 32(3): 37-45.
[9] 杜鹏, 陈志伟, 周长民, 张新新, 李忠亮. 在线连续轻烃录井技术研究与应用[J]. 录井工程, 2021, 32(1): 56-61.
[10] 黄万国, 王长在, 李雅雯, 张会民, 陈贺, 余仟子. 盐水钻井液对录井的影响分析研究[J]. 录井工程, 2020, 31(S1): 29-36.
[11] 马青春. 页岩油录井综合评价方法探索——以冀东油田NP 2-SL井为例[J]. 录井工程, 2020, 31(S1): 13-18.
[12] 阎荣辉, 田伟志, 鲍永海, 武星, 杨森, 沈柏坪. 元素录井技术在鄂尔多斯盆地致密砂岩水平井地质导向中的研究与应用[J]. 录井工程, 2020, 31(4): 22-28.
[13] 荆文明, 方铁园, 田青青, 李艳霞. 热解气相色谱录井技术在储集层流体性质识别中的应用[J]. 录井工程, 2020, 31(3): 94-98.
[14] 杜鹏, 何强, 高凌云, 刘胜明, 刘军. 岩屑自然伽马录井技术在冀东油田的应用[J]. 录井工程, 2020, 31(3): 18-22.
[15] 阎荣辉, 黄子舰, 方铁园, 王海涛, 焦艳爽, 刘芳芳. 录井技术在页岩油井地质导向中的应用[J]. 录井工程, 2020, 31(3): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 占 蓉 邹筱春 李 芳. 随钻X射线衍射分析录井技术应用研究[J]. 录井工程, 2012, 23(04): 1 -5 .
[2] 滕工生 杨光照 修天竹. 随钻X射线衍射分析仪在吉林探区的试验与应用[J]. 录井工程, 2012, 23(04): 6 -9 .
[3] 张国田 郑新卫 王丹丹 孟祥文. X射线荧光元素录井在辽河油田的应用[J]. 录井工程, 2012, 23(04): 10 -16 .
[4] 邓 平 王丙寅 李玉勤 马 红 . 地化录井技术在永安油田致密砂岩油气层评价中的应用[J]. 录井工程, 2012, 23(04): 17 -21 .
[5] 李建成 江 波 杨卫东 赵彦清 胡张明 董 彪. 准噶尔盆地气测多元线性回归解释方法研究[J]. 录井工程, 2012, 23(04): 22 -25 .
[6] 王洪伟 杨光照 薜 岩 姬月凤 季 艳 . 气测录井资料随钻自动实时解释系统的研制与开发[J]. 录井工程, 2012, 23(04): 26 -30 .
[7] 赵宏波 刘小宁 梁院科 周鹏飞 王洪君. 鄂尔多斯盆地油水层轻烃录井解释评价方法[J]. 录井工程, 2012, 23(04): 31 -35 .
[8] 寇海亮 张丽艳. 北部凹陷新安村组、乌云组储集层解释评价[J]. 录井工程, 2012, 23(04): 36 -39 .
[9] 孔 郁 琪. 地化录井在松辽盆地黑帝庙油层原油性质判别中的应用[J]. 录井工程, 2012, 23(04): 40 -43 .
[10] 王 丽. 综合录井仪色谱标定减压阀的研究[J]. 录井工程, 2012, 23(04): 62 -66 .