录井工程 ›› 2023, Vol. 34 ›› Issue (2): 1-8.doi: 10.3969/j.issn.1672-9803.2023.02.001

• 工艺技术 •    下一篇

基于核磁共振T2谱的致密砂岩孔喉分布评价方法

屈凯旋, 李国良, 于春勇, 赵全国, 段传丽, 房金伟   

  1. ①中国石油渤海钻探油气合作开发分公司;
    ②中国石油渤海钻探第一录井公司
  • 收稿日期:2023-04-19 出版日期:2023-06-25 发布日期:2023-07-12
  • 作者简介:屈凯旋 工程师,1993年生,博士,2022年毕业于中国地质大学(北京)矿产普查与勘探专业,现在中国石油渤海钻探油气合作开发分公司从事地质综合研究工作。通信地址:300457 天津市开发区第二大街83号(中国石油天津大厦)。电话:18811170326。E-mail:qukaixuan@cnpc.com.cn
  • 基金资助:
    中国石油渤海钻探工程公司重大工艺项目“苏里格气田西区富集成藏配置与渗透砂岩储层改造技术一体化研究”子课题“苏里格气田西区构造-岩性复合气藏富集成因机理与储层流体性质识别技术研究”(编号:2023ZD19Y-01)

Evaluation method of pore throat distribution in tight sandstones based on NMR T2 spectrum

QU Kaixuan, LI Guoliang, YU Chunyong, ZHAO Quanguo, DUAN Chuanli, FANG Jinwei   

  1. ①Oil & Gas Cooperation and Development Company, BHDC, CNPC, Tianjin 300457,China;
    ②No.1 Mud Logging Company, BHDC, CNPC, Tianjin 300280, China
  • Received:2023-04-19 Online:2023-06-25 Published:2023-07-12

摘要: 利用核磁共振技术估算孔喉分布的关键在于准确确定弛豫时间与孔喉半径之间的转换方法,常规的线性关系转换方法拟合效果较差,而幂函数转换方法是经验公式,无法通过数学关系推导得出,两种方法都具有一定的缺陷。因此,基于Korringa-Seevers-Torrey模型,结合核磁共振原理推导出了弛豫时间T2谱与孔喉半径的理论关系,并建立了相应的计算模型,所有的模型参数都具有严格的物理意义。以南华北盆地太原组致密砂岩样品为例,对推导公式的准确性进行了验证。考虑到不同大小孔隙的表面弛豫率具有差异性,利用推导公式模型对致密砂岩的孔喉半径分布范围分段进行了拟合,结果显示,采用新方法拟合弛豫时间与孔喉半径数据的效果极佳,拟合决定系数均在0.89以上,说明新方法的准确性极高。此外,基于新方法获得了致密砂岩储层核磁共振孔喉半径分布,并确定了与可动流体分布对应的孔喉半径下限范围。该方法不仅有效提升了核磁共振孔喉半径分布的转换精度,也为利用核磁共振技术定量表征致密砂岩储层的孔隙结构特征提供了可靠的工具。

关键词: 致密砂岩, 核磁共振, 孔喉半径, 可动流体, 弛豫时间

Abstract: Accurate determination of the conversion method between relaxation time and pore throat radius is the crucial for estimating pore throat distribution by using NMR technique. However, the conventional linear relation conversion method has poor fitting results, and the power function conversion method is an empirical formula, which cannot be derived from the mathematical relations, both of them have certain limitations in practical use. The theoretical relationship between the relaxation time T2 spectrum and the pore throat radius was derived based on the Korringa-Seevers-Torrey model in conjunction with NMR principles, the corresponding computational model was developed,and all model parameters had strict physical meanings. The accuracy of the derived equation was verified using the tight sandstone samples from the Taiyuan Formation in the Southern North China Basin as examples. Considering the variability of surface relaxivity of pores with different diameters, the derived equation model was used to fit the pore throat radius distribution of tight sandstones in order of segmentation. The new method has excellent results in fitting the relaxation time to the pore throat radius, with determination coefficient above 0.89, indicating the high accuracy of the new method. In addition, based on the new method, the NMR pore throat radius distribution of tight sandstone reservoirs was obtained, and the lower limit range of pore throat radius corresponding to the movable fluid distribution was determined.This method not only effectively improves the accuracy of converting NMR T2 distribution into pore throat radius distribution, but also provides a reliable tool for quantitative characterization of the pore structure of tight sandstone reservoirs using NMR technique.

Key words: tight sandstone, NMR, pore throat radius, movable fluid, relaxation time

中图分类号: 

  • TE132.1
[1] LAI J, WANG G W, WANG Z Y, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews,2018,177:436-457.
[2] VOLOKITIN Y, LOOYESTIJN W, SLIJKERMAN W, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics,2001,42(4):334-343.
[3] 运华云,赵文杰,刘兵开,等. 利用T2分布进行岩石孔隙结构研究[J]. 测井技术,2002,26(1):18-21.
YUN Huayun, ZHAO Wenjie, LIU Bingkai, et al. Researching rock pore structure with T2 distribution[J]. Well Logging Technology, 2002,26(1):18-21.
[4] 刘堂宴,王绍民,傅容珊,等. 核磁共振谱的岩石孔喉结构分析[J].地球物理学进展,2003,18(3):737-742.
LIU Tangyan, WANG Shaomin, FU Rongshan,et al. Analysis of rock pore throat structure with NMR spectra[J]. Progress in Geophysics, 2003,18(3):737-742.
[5] 何雨丹,毛志强,肖立志,等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报(地球科学版),2005(2):177-181.
HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J].Journal of Jilin University(Earth Science Edition), 2005(2):177-181.
[6] 王学武,杨正明,李海波,等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报(自然科学版),2010,32(2):69-72.
WANG Xuewu,YANG Zhengming, LI Haibo, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010,32(2):69-72.
[7] 李艳,范宜仁,邓少贵,等. 核磁共振岩心实验研究储层孔隙结构[J]. 勘探地球物理进展,2008,31(2):129-133.
LI Yan, FAN Yiren, DENG Shaogui, et al. Experimental study of pore structure with nuclear magnetic resonance[J]. Progress in Exploration Geophysics,2008,31(2):129-133.
[8] DAIGLE H, JOHNSON A, THOMAS B. Determining fractal dimension from nuclear magnetic resonance data in rocks with internal magnetic field gradients[J]. Geophysics,2014,79(6):D425-D431.
[9] GAO H, LI H Z. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance (NMR) technique[J]. Journal of Petroleum Science and Engineering,2015,133:258-267.
[10] ZHU F, HU W X, CAO J, et al. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China[J]. Marine and Petroleum Geology,2018,98:116-132.
[11] DAIGLE H, JOHNSON A. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory[J]. Transport in Porous Media,2016,111:669-679.
[12] 毛志强,张冲,肖亮. 一种基于核磁共振测井计算低孔低渗气层孔隙度的新方法[J]. 石油地球物理勘探,2010,45(1):105-109.
MAO Zhiqiang, ZHANG Chong, XIAO Liang. A NMR-based porosity calculation method for low porosity and low permeability gas reservoir[J]. Oil Geophysical Prospecting, 2010,45(1):105-109.
[13] KORRINGA J, SEEVERS D O, TORREY H C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers[J]. Phys. Rev.,1962,127(4):1143-1150.
[14] APPEL M. Nuclear magnetic resonance and formation porosity[J]. Petrophysics,2004,45(3):296-307.
[15] 房涛,张立宽,刘乃贵,等. 核磁共振技术定量表征致密砂岩气储层孔隙结构:以临清坳陷东部石炭系-二叠系致密砂岩储层为例[J]. 石油学报,2017,38(8):902-915.
FANG Tao, ZHANG Likuan, LIU Naigui, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology: A case study of Carboniferous-Permian tight sandstone reservoir in Linqing depression[J]. Acta Petrolei Sinica, 2017,38(8):902-915.
[16] LIU X F, WANG J F, GE L, et al. Pore-scale characterization of tight sandstone in Yanchang Formation Ordos Basin China using micro-CT and SEM imaging from nm- to cm- scale[J]. Fuel,2017,209:254-264.
[17] 代全齐,罗群,张晨,等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征:以鄂尔多斯盆地延长组7段为例[J]. 石油学报,2016,37(7):887-898.
DAI Quanqi, LUO Qun, ZHANG Chen, et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment:A case study of seventh Member in Yanchang Formation,Ordos Basin[J]. Acta Petrolei Sinica,2016,37(7):887-898.
[18] HUANG H X, SUN W, JI W M, et al. Effects of pore-throat structure on gas permeability in the tight sandstone reservoirs of the Upper Triassic Yanchang Formation in the Western Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,2018,162:602-616.
[1] 齐丹, 王玉善, 李国良, 段传丽, 陈凌云, 郝兵. 苏里格SW区块高含水致密砂岩气藏优势储层主控因素分析[J]. 录井工程, 2023, 34(1): 107-112.
[2] 杨佩佩, 卢异, 周杨, 吴刚, 李文亮, 任光文. 南港油田板2油组深层致密砂岩裂缝预测及成因研究[J]. 录井工程, 2022, 33(4): 118-124.
[3] 朱连丰. 姬塬地区长9段致密砂岩储层流体性质解释方法研究与应用[J]. 录井工程, 2022, 33(3): 60-66.
[4] 赵天东, 张学忠, 王刚, 张杰, 赵慧霞, 王立永. 致密砂岩储层录井综合解释评价方法研究——以苏里格气田苏20区块为例[J]. 录井工程, 2022, 33(2): 58-67.
[5] 李怀军, 罗宏斌, 郁莹, 徐永华, 肖胜, 方剑. 准噶尔盆地南缘区块油基钻井液条件下录井技术的选取[J]. 录井工程, 2022, 33(1): 38-45.
[6] 隋明阳. 深薄致密砂岩储层描述关键技术研究——以渤南油田Y 184井区为例[J]. 录井工程, 2022, 33(1): 116-122.
[7] 滕飞启, 向晓, 吴明松, 张春阳, 陈鹏, 刘治恒. 神木-米脂地区上古生界核磁共振录井三元图板建立及应用[J]. 录井工程, 2022, 33(1): 56-59.
[8] 李伟, 杨鹏波, 黄子舰, 方铁园, 刘涛, 焦艳爽. 多种录井技术在彭阳区块特殊油气藏评价中的综合应用[J]. 录井工程, 2021, 32(4): 79-83.
[9] 冯建园, 常静春, 窦如胜, 郝丽萍, 尚勇, 郭祥光, 燕兴荣. 致密砂岩气储层岩性测井综合评价技术[J]. 录井工程, 2021, 32(3): 102-106.
[10] 苑传江, 陈向辉, 黄卫东, 黄国荣, 付连明, 曾杰. 核磁共振+显微荧光技术在高压储集层含水性判别中的研究与应用[J]. 录井工程, 2021, 32(2): 11-18.
[11] 邵阳, 刘俊东, 袁雪花, 徐明, 袁洪波, 席斌, 胡博, 刘洋. 乌马营二叠系致密砂岩气层测井评价方法的完善[J]. 录井工程, 2021, 32(1): 67-72.
[12] 李怀军, 李秀彬, 翟亚杰, 曾杰, 张小虎, 戴敏. 随钻录井快速识别储集岩与烃源岩的方法及应用[J]. 录井工程, 2021, 32(1): 44-50.
[13] 丁娱娇, 李俊国, 朱伟峰, 刘爱平, 吕芳芳, 钟巍. T1-T2二维核磁共振页岩油储集层含油性检测方法[J]. 录井工程, 2020, 31(S1): 48-53.
[14] 阎荣辉, 田伟志, 鲍永海, 武星, 杨森, 沈柏坪. 元素录井技术在鄂尔多斯盆地致密砂岩水平井地质导向中的研究与应用[J]. 录井工程, 2020, 31(4): 22-28.
[15] 田士伟. 基于核磁共振录井数据的多层感知器神经网络对苏里格气田南区的评价预测[J]. 录井工程, 2020, 31(3): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!