录井工程 ›› 2023, Vol. 34 ›› Issue (2): 72-76.doi: 10.3969/j.issn.1672-9803.2023.02.012

• 装备 • 上一篇    下一篇

智能测导地面测控系统研发设计

杨亮, 白庆杰, 李传伟, 曾晓英, 黄梅   

  1. 中国石油集团测井有限公司
  • 收稿日期:2023-02-13 出版日期:2023-06-25 发布日期:2023-07-12
  • 作者简介:杨亮 高级工程师,1982年生,2007年硕士毕业于西南石油大学机械电子工程专业,现在中国石油集团测井有限公司测井技术研究院主要从事测井仪器研究工作。通信地址:102206 北京市昌平区沙河镇西沙屯中石油科技园A12地块C座720北京测井技术研究院。电话:18049635091。E-mail:80841546@qq.com
  • 基金资助:
    中国石油集团油田技术服务有限公司项目“智能导向系统研发”(编号:2022T-005-001)

Design of IDS ground control system

YANG Liang, BAI Qingjie, LI Chuanwei, ZENG Xiaoying, HUANG Mei   

  1. China National Logging Corporation, Beijing 102206, China
  • Received:2023-02-13 Online:2023-06-25 Published:2023-07-12

摘要: 智能测导系统具有高轨迹控制精度、高造斜率等特点,近年来在大位移水平井的施工中应用比较广泛,为了实现其闭环控制,需研制与该系统相配套的地面测控系统。从数据采集层、传输层、数据层和应用层4个层级阐述了智能测导地面测控系统架构的分层设计原理,介绍了各层级的主要功能以及系统整体的运作流程。根据系统架构的设计,针对每个层级,分别对现场数据采集与控制、数据融合与远程传输、地质导向等重要组成部分进行了详细的剖析,进而设计了相应的功能模块。通过现场施工应用表明,在四川页岩气区块油气层的钻遇率平均达到97%以上,提高了储层钻遇率,整个系统取得了较好应用效果。

关键词: 智能测导系统, 数据采集, 指令下传, 远程传输, 地质导向

Abstract: In recent years, intelligent directive system(IDS) has been widely used in the construction of extended reach horizontal wells because of its characteristics of high trajectory control accuracy and high construction slope. However, it is necessary to develop the ground control system supporting IDS in order to realize the closed-loop control of IDS. Firstly, this paper provides the overall design of the IDS ground control system, expounds the hierarchical design principle of the system architecture from the data acquisition layer, transmission layer, data layer and application layer, and describes the main functions of each layer and the overall operation process of the system. Secondly, according to the design of the system architecture, it gives a detailed technical description for each level including site data acquisition and control, data fusion remote transmission, geosteering and other important components,and discusses the design and implementation of each function, and further designs the corresponding function module. Finally, the drilling rate of the reservoir is improved through the actual construction and application in the field. The drilling rate of the oil and gas reservoirs in Sichuan shale gas block is improved to more than 97% on average, and the whole system has achieved good application effect.

Key words: IDS, data acquisition, command download, remote transmission, geosteering

中图分类号: 

  • TE132.1
[1] 杨亮,李安宗,李传伟,等. 基于网络化的随钻测井地面采集管理平台设计[J].计算机测量与控制,2014,22(9):2931-2933.
YANG Liang,LI Anzong,LI Chuanwei, et al. Design of network based on LWD ground acquisition management platform[J]. Computer Measurement & Control,2014,22(9):2931-2933.
[2] 刘修善,苏义脑. 地面信号下传系统的方案设计[J].石油学报,2000,21(6):88-92.
LIU Xiushan,SU Yinao. Scheme design of downward signaling system[J]. Acta Petrolei Sinica,2000,21(6):88-92.
[3] 潘海洋. 导向钻井中压力指令下传系统的设计[J].电子世界,2018(16):175,177.
PAN Haiyang. Design of pressure instruction transmission system in steering drilling[J]. Electronics World,2018(16):175,177.
[4] 李琪,彭元超,张绍槐,等. 旋转导向钻井信号井下传送技术研究[J].石油学报,2007,28(4):108-111.
LI Qi, PENG Yuanchao, ZHANG Shaohuai, et al. Study on signal transmission technique in rotary steering drilling[J]. Acta Petrolei Sinica,2007,28(4):108-111.
[5] 汤楠,霍爱清,汪跃龙,等. 旋转导向钻井系统下行通讯接收功能的开发[J].石油学报,2010,31(1):157-160.
TANG Nan,HUO Aiqing,WANG Yuelong, et al. Development of downward communication receiving function in rotary steerable drilling system[J]. Acta Petrolei Sinica,2010,31(1):157-160.
[6] 霍爱清,戴晨. 导向钻井下行通讯地面监控系统设计[J].西安石油大学学报(自然科学版),2013,28(4):73-77.
HUO Aiqing, DAI Chen. Design of downlink communication surface monitoring system for steering drilling[J]. Journal of Xi'an Shiyou University(Natural Science),2013,28(4):73-77.
[7] 李传伟,杨亮,李国军,等. 测井地质工程一体化软件设计与实现[J].测井技术,2018,42(2):227-231.
LI Chuanwei, YANG Liang, LI Guojun, et al. Design and implement of integrated software in drilling[J]. Well Logging Technology,2018,42(2):227-231.
[8] 孙宝刚,张树森. 随钻测、录井结合指导水平井钻井方法及应用[J].录井工程,2012,23(3):12-15.
SUN Baogang, ZHANG Shusen. Drilling method and application of horizontal well guided by the combination of logging while drilling and mud logging[J]. Mud logging Engineering,2012,23(3):12-15.
[1] 马海, 范光第. 基于BP神经网络模型的随钻测井曲线预测[J]. 录井工程, 2023, 34(2): 22-27.
[2] 王俊, 岳红星, 秦榜伟, 罗鸿成, 龚超, 王跃昆. 吉木萨尔页岩油录井综合地质导向技术应用研究[J]. 录井工程, 2023, 34(1): 47-53.
[3] 向克满, 唐诚, 王崇敬, 梁波, 凡刚. 川南D区水平井靶区小层的UMAP算法判别图板研究[J]. 录井工程, 2023, 34(1): 18-23.
[4] 付基友, 罗宏斌, 陈乃志, 张智慧, 张立明, 魏世亮. 火成岩储层水平井随钻录井综合评价技术[J]. 录井工程, 2022, 33(4): 35-40.
[5] 赵红燕, 廖勇, 项克伟, 邹筱春, 陈辉, 石元会. 起伏型地层水平段井筒轨迹控制方法[J]. 录井工程, 2022, 33(3): 117-120.
[6] 朱志锋, 张玉良, 彭述兴, 敬小军, 喻意, 任立春. 靖安油田低渗油藏气测组分分析技术创新及应用[J]. 录井工程, 2022, 33(1): 24-32.
[7] 黄余金. 储层界面预测新方法在水平井地质导向中的应用[J]. 录井工程, 2022, 33(1): 18-23.
[8] 宋明会. 地质工程一体化录井综合导向模式设计与应用[J]. 录井工程, 2022, 33(1): 90-93.
[9] 李荣, 李军, 武刚. 以太网CAN总线数据采集技术在SMART综合录井仪中的应用[J]. 录井工程, 2022, 33(1): 85-89.
[10] 谷红陶, 刘江涛. 川东南平桥区块页岩气水平井地质导向关键技术[J]. 录井工程, 2022, 33(1): 109-115.
[11] 梁斌, 任瑞川, 程琦, 曾济楚, 王金友, 吴生. 水平井地质导向关键技术研究及应用[J]. 录井工程, 2021, 32(4): 37-42.
[12] 王重云. 随钻方位伽马测井仪的设计与性能验证[J]. 录井工程, 2021, 32(4): 94-98.
[13] 曲文波. 川西雷口坡组气藏录井地质导向方法研究与应用[J]. 录井工程, 2021, 32(2): 109-114.
[14] 王臣, 张春, 王强, 程琦, 贾国龙, 刁丽颖, 曾济楚, 高羽丰. 水平井地质导向技术在周清庄油田薄油层中的应用[J]. 录井工程, 2021, 32(1): 39-43.
[15] 侯安飞. 随钻方位伽马探管的设计[J]. 录井工程, 2021, 32(1): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!