录井工程 ›› 2023, Vol. 34 ›› Issue (4): 104-111.doi: 10.3969/j.issn.1672-9803.2023.04.017

• 地质研究 • 上一篇    下一篇

富有机质页岩的岩石力学性质及其影响因素研究进展

张瑶珈①,②, 陈志鹏①,②, 于春勇, 董峰, 屈凯旋, 施宝海   

  1. ①西安石油大学地球科学与工程学院;
    ②西安石油大学陕西省油气成藏地质学重点实验室;
    ③中国石油渤海钻探第一录井公司;
    ④中国石油渤海钻探第二录井公司;
    ⑤中国石油渤海钻探油气合作开发分公司
  • 收稿日期:2023-10-07 出版日期:2023-12-25 发布日期:2024-01-04
  • 通讯作者: 陈志鹏1987年生.西安石油大学地球科学与工程学院讲师,,主要从事碎屑岩和碳酸盐岩的沉积、成岩与油气成藏评价研究。通信地址:710065陕西省西安市雁塔区电子二路东段18号。电话:18658895629。E-mail: chenzhipeng305@163.com
  • 作者简介:张瑶珈2001年生,西安石油大学地球科学与工程学院硕士研究生在读,主要从事沉积学及油气地质方面的研究。电话:137205076O7。通信地址:710065陕西省西安市雁塔区电子二路东段18号。E-mail: zhangyaojiami@163.com
  • 基金资助:
    陕西省自然科学基础研究计划“咸化湖盆中不同性质热流体作用下有机质差异富集的成因机理"(编号:20.1.1Q-592); 陕西省教育厅专项科研计划“热年代学约束下哈日凹陷中新生代构造热演化研究”(编号:21JK0840)

Geomechanical properties and influencing factors of organic-rich shale

ZHANG Yaojia①,②, CHEN Zhipeng①,②, YU Chunyong, DONG Feng, QU Kaixuan, SHI Baohai   

  1. ①School of Earth Science and Engineering,Xi'an Shiyou University, Xi′an, Shaanxi 710065,China;;
    ②Key Laboratory of Shaanxi Province for Oil and Gas Accumulation Geology, Xi'an Shiyou University, Xi′an, Shaanxi 710065,China;;
    ③No.1 Mud Logging Company, BHDC,CNPC,Tianjin 300280,China;
    ④No.2 Mud Logging Company, BHDC,CNPC, Renqiu, Hebei 062552,China;
    ⑤Oil & Gas Corporation and Development Company, BHDC, CNPC, Tianjin 300457,China;
  • Received:2023-10-07 Online:2023-12-25 Published:2024-01-04

摘要: 岩石力学性质是井筒稳定性评价和水力压裂设计的重要参数,富有机质页岩的岩石力学性质及其影响因素一直是页岩油气领域关注的焦点。岩石力学性质的表征方法多种多样且适应性各不相同,加之复杂的地质条件对页岩岩石力学性质存在不同程度的影响,因此正确评价页岩的岩石力学性质具有重要意义。在简述富有机质页岩力学评价中常用参数及其含义的基础上,综述了页岩岩石力学性质的主要影响因素,并讨论了不同影响因素的适用性和局限性,结果表明:(1)弹性、强度和脆性是页岩岩石力学评价的重要参数,不同应用场合对评价参数各有侧重;(2)富有机质页岩的岩石力学性质受岩石内在因素以及原位埋藏环境的影响,尤以受矿物组分、有机质、含水率、围压、温度、层理、天然裂缝、各向异性的影响最为显著,在优选页岩油气开发甜点时应首先明确影响岩石力学性质的主控因素。最后对岩石力学性质在富有机质页岩开发中的应用及未来发展进行了展望,认为解决页岩的力学问题是推动4 000 m以深页岩油气开发的关键,开展基于岩石力学性质的页岩分类研究有助于统一评价标准,数值模拟和机器学习等技术将为富有机质页岩的岩石力学性质表征发挥更重要的作用。

关键词: 页岩, 富有机质, 页岩油气, 水力压裂, 岩石力学, 矿物组分

Abstract: Geomechanical properties play a crucial role in both evaluating wellbore stability and stimulating hydraulic fracturing. The geomechanical properties of organic-rich shale and its influencing factors have always been a central focus in the field of shale oil and gas. There are multiple ways to characterize the properties of rocks with different indications. Furthermore, the complex geological conditions significantly influence the geomechanical properties of shale. Therefore, correctly evaluating the geomechanical properties of shale is of great practical significance. This paper reviews the main influencing factors of shale mechanical properties, and discusses the applicability and limitations of different influencing factors on the basis of briefly describing the common parameters and their indications in the geomechanical evaluation of organic-rich shale. The results indicate that: (1) Elasticity, strength, and brittleness are important parameters for the geomechanical evaluation of shale, and different evaluation parameters are applicable to different scenarios. (2) The geomechanical properties of organic-rich shale are affected by both internal factors of the rock and the in-situ burial environment. Among these factors, mineral components, organic matter abundance, water content, confining pressure, temperature, bedding, natural fractures, and anisotropy are the most significant. It is essential to identify the main controlling factors affecting geomechanical properties to select sweet spots for shale oil and gas development. (3) In terms of application and future development, solving the mechanical problems of shale is the key to promote the development of shale deeper than 4000 meters. Conducting shale classification research based on geomechanical properties will help unify the evaluation standards. Numerical simulation and machine learning will play increasingly important roles in characterizing the geomechanical properties of organic-rich shale.

Key words: shale, organic-rich, shale oil and gas development, hydraulic fracturing, rock mechanics, mineral components

中图分类号: 

  • TE132.1
[1] RICKMAN R, MULLEN M, PETRE E, et al.A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[R]. Denver: SPE annual technical conference and exhibition. OnePetro, 2008.
[2] KIVI I R, AMERI M, MOLLADAVOODI H.An experimental investigation on deformation and failure behavior of carbonaceous Garau shale in Lurestan Basin, west Iran: Application in shale gas development[J]. Journal of Natural Gas Science and Engineering,2018,55:135-153.
[3] WANG F P, GALE J F W. Screening criteria for shale-gas systems[J]. GCAGS Transactions,2009,59:779-793.
[4] PASSEY Q R, BOHACS K M, ESCH W L, et al.From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[R]. Beijing: International oil and gas conference and exhibition in China,2010.
[5] RYBACKI E, REINICKE A, MEIER T, et al.What controls the mechanical properties of shale rocks?Part I: Strength and Young's modulus[J]. Journal of Petroleum Science and Engineering,2015,135:702-722.
[6] DONG T,HARRIS N B,AYRANCI K,et al.The impact of rock composition on geomechanical properties of a shale formation:Middle and Upper Devonian Horn River Group shale,Northeast British Columbia,Canada[J]. AAPG Bulletin,2017,101(2):177-204.
[7] 王健,石万忠,舒志国,等. 富有机质页岩TOC含量的地球物理定量化预测[J]. 石油地球物理勘探,2016,51(3):596-604.
WANG Jian, SHI Wanzhong, SHU Zhiguo, et al.Geophysical quantitative prediction of TOC content in organic-rich shale[J]. Oil Geophysical Prospecting,2016,51(3):596-604.
[8] LABANI M M, REZAEE R.The importance of geochemical parameters and shale composition on rock mechanical properties of gas shale reservoirs: A case study from the Kockatea Shale and Carynginia Formation from the Perth Basin, Western Australia[J]. Rock Mechanics and Rock Engineering,2014,48(3):1249-1257.
[9] 戴俊生,汪必峰,马占荣. 脆性低渗透砂岩破裂准则研究[J]. 新疆石油地质,2007,28(4):393.
DAI Junsheng, WANG Bifeng, MA Zhanrong.Research on cracking principles of brittle low-permeability sands[J]. XinJiang Petroleum Geology,2007,28(4):393.
[10] JARVIE D M,HILL R J,RUBLE T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin,2007,91(4):475-499.
[11] HARRIS N B,MISKIMINS J L,MNICH C A.Mechanical anisotropy in the Woodford Shale,Permian Basin:Origin,magnitude,and scale[J]. The Leading Edge,2011,30(3):284-291.
[12] KUMAR V,SONDERGELD C,RAI C S. Effect of mineralogy and organic matter on mechanical properties of shale[J]. Interpretation,2015,3(3):SV9-SV15.
[13] VANORIO T,MUKERJI T,MAVKO G.Emerging methodologies to characterize the rock physics properties of organic-rich shales[J]. The Leading Edge,2008,27(6):780-787.
[14] IBANEZ W D, KRONENBERG A K.Experimental deformation of shale: Mechanical properties and microstructural indicators of mechanisms[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):723-734.
[15] VAFAIE A,KIVI I R.An investigation on the effect of thermal maturity and rock composition on the mechanical behavior of carbonaceous shale formations[J]. Marine and Petroleum Geology,2020,116:104315.
[16] DONG T,HARRIS N B,KNAPP L J,et al.The effect of thermal maturity on geomechanical properties in shale reservoirs:An example from the Upper Devonian Duvernay Formation,Western Canada Sedimentary Basin[J]. Marine and Petroleum Geology,2018,97:137-153.
[17] XIA Y J,ZHOU H,ZHANG C Q,et al.The evaluation of rock brittleness and its application:A review study[J]. European Journal of Environmental and Civil Engineering,2022,26(1):239-279.
[18] LIU Z B,SHAO J F,XIE S Y,et al.Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:68-76.
[19] WU Z H,LOU Y L,YIN S A,et al.Acoustic and fractal analyses of the mechanical properties and fracture modes of bedding‐containing shale under different seepage pressures[J]. Energy Science & Engineering,2020,8(10):3638-3656.
[20] WANG Y,LIU D Q,ZHAO Z H,et al.Investigation on the effect of confining pressure on the geomechanical and ultrasonic properties of black shale using ultrasonic transmission and post-test CT visualization[J]. Journal of Petroleum Science and Engineering,2020,185:106630.
[21] MASRI M,SIBAI M,SHAO J F,et al.Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences,2014,70:185-191.
[22] NIANDOU H,SHAO J F,HENRY J P,et al.Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(1):3-16.
[23] GHOLAMI R,RASOULI V.Mechanical and elastic properties of transversely isotropic slate[J]. Rock Mechanics and Rock Engineering,2014,47:1763-1773.
[24] VERNIK L,NUR A.Ultrasonic velocity and anisotropy of hydrocarbon source rocks[J]. Geophysics,1992,57(5):727-735.
[25] HORNBY B E,SCHWARTZ L M,Hudson J A.Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics,1994,59(10):1570-1583.
[26] WANG Y,LI C H.Investigation of the P-and S-wave velocity anisotropy of a Longmaxi formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation[J]. Journal of Petroleum Science and Engineering,2017,158:253-267.
[27] REZAEI A,SIDDIQUI F,DINDORUK B,et al.A review on factors influencing the rock mechanics of the gas bearing formations[J]. Journal of Natural Gas Science and Engineering,2020,80:103348.
[28] WANG G C,CARR T R.Methodology of organic-rich shale lithofacies identification and prediction:A case study from Marcellus Shale in the Appalachian Basin[J]. Computers & Geosciences,2012,49:151-163.
[29] XIE H P,LI C,HE Z Q,et al.Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104548.
[1] 张文雅, 刘治恒, 郝晋美, 朱更更, 张春阳, 吴明松. 元素录井技术在鄂尔多斯盆地长7页岩油岩性识别中的应用[J]. 录井工程, 2023, 34(4): 35-41.
[2] 黄卫东, 李秀彬, 付连明, 李怀军, 罗宏斌, 张小虎. 准噶尔盆地玛X井风城组页岩油含油性与岩性特征关系研究[J]. 录井工程, 2023, 34(4): 96-103.
[3] 刘达贵, 田蒙, 刘兴, 裴钰, 杨琳, 曹雯. 黄瓜山构造五峰组-龙马溪组页岩岩相特征研究[J]. 录井工程, 2023, 34(4): 132-136.
[4] 屈彦龙. 自然伽马能谱录井技术在川南地区威远构造页岩气勘探中的应用[J]. 录井工程, 2023, 34(3): 15-21.
[5] 张文雅, 孙红华, 刘建新, 李娟, 吕伟元, 赵跃佳. 优势页岩油储层的岩性识别方法[J]. 录井工程, 2023, 34(3): 63-67.
[6] 刘长春, 杨永兴, 方铁园, 杨雯婷, 王义俊, 李德胜. 鄂尔多斯盆地页岩油优质储层评价方法[J]. 录井工程, 2023, 34(3): 49-52.
[7] 牛强, 慈兴华. 碳同位素录井技术在胜利油区页岩油评价中的应用——以渤南洼陷YYP 1井为例[J]. 录井工程, 2023, 34(2): 9-14.
[8] 方锡贤. 基于录井资料的页岩油储层评价参数探讨[J]. 录井工程, 2023, 34(1): 1-8.
[9] 向克满, 唐诚, 王崇敬, 梁波, 凡刚. 川南D区水平井靶区小层的UMAP算法判别图板研究[J]. 录井工程, 2023, 34(1): 18-23.
[10] 王俊, 岳红星, 秦榜伟, 罗鸿成, 龚超, 王跃昆. 吉木萨尔页岩油录井综合地质导向技术应用研究[J]. 录井工程, 2023, 34(1): 47-53.
[11] 肖光武, 杨世亮. 碳同位素录井技术在古龙青山口组页岩油中的应用——以GY 3井为例[J]. 录井工程, 2022, 33(4): 6-12.
[12] 刘林鑫, 杜贵超. 扫描电镜法在石油储层评价中的应用[J]. 录井工程, 2022, 33(4): 47-53.
[13] 李柯, 唐诚, 王崇敬, 梁波, 施强, 欧传根. 川南页岩小微尺度断层井震结合识别方法研究[J]. 录井工程, 2022, 33(4): 125-132.
[14] 张文雅, 胡洋, 张玉新, 孙红华, 邓清. 饶阳凹陷页岩油烃源岩及“甜点区”的录井评价研究[J]. 录井工程, 2022, 33(4): 61-68.
[15] 徐哲, 倪有利, 王宇, 杜鹏, 吐洪江, 李晗. 油基钻井液条件下页岩油储层岩石热解参数校正方法[J]. 录井工程, 2022, 33(4): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 侯平① 史卜庆② 郑俊章① 罗曼① 樊长江① 林亚平① . 应用录井资料综合判别油、气、水层方法[J]. 录井工程, 2008, 19(03): 1 -8 .
[2] 徐 建 正. MAS快速录井仪的功能和应用效果[J]. 录井工程, 2012, 23(01): 61 -64 .
[3] 崔 强. 济阳坳陷下古生界顶界随钻确定技术的改进[J]. 录井工程, 2012, 23(03): 41 -44 .
[4] 赵 明. 岩石薄片显微图像技术在储集层评价中的应用[J]. 录井工程, 2007, 18(03): 13 -16 .
[5] 倪 初 明. 基于神经网络的电导率传感器温度补偿[J]. 录井工程, 2011, 22(03): 66 -69 .
[6] 马青春 马 红 杨立华 薛明侠 焦香婷 窦如俊 李 艳 李红梅 王海燕 曾学志 . 储集层产出能力定量荧光录井解释评价方法[J]. 录井工程, 2014, 25(02): 48 -50,69 .
[7] 牛 强 慈兴华 王 鑫 . BYP 1井泥页岩油气层录井评价方法[J]. 录井工程, 2013, 24(03): 44 -48 .
[8] 吴思仪 司马立强 袁 龙 温新房 . 苏北盆地致密砂岩油藏气测录井评价方法[J]. 录井工程, 2014, 25(03): 41 -45 .
[9] 廖 涛 雷 军 . 国内外录井技术现状及发展方向[J]. 录井工程, 2016, 27(01): 6 -13 .
[10] 王玉善 于长录 王金荣 李国良 邵映明 邓东东 邢 芳 . 地震属性分析技术在苏里格气田苏76区块储集层预测中的应用[J]. 录井工程, 2014, 25(03): 15 -18 .